Deep Depth From Focus

نویسندگان

  • Caner Hazirbas
  • Laura Leal-Taixé
  • Daniel Cremers
چکیده

Depth from Focus (DFF) is one of the classical ill-posed inverse problems in computer vision. Most approaches recover the depth at each pixel based on the focal setting which exhibits maximal sharpness. Yet, it is not obvious how to reliably estimate the sharpness level, particularly in low-textured areas. In this paper, we propose ‘Deep Depth From Focus (DDFF)’ as the first end-to-end learning approach to this problem. Towards this goal, we create a novel real-scene indoor benchmark composed of 4D light-field images obtained from a plenoptic camera and ground truth depth obtained from a registered RGB-D sensor. Compared to existing benchmarks our dataset is 30 times larger, enabling the use of machine learning for this inverse problem. We compare our results with state-of-the-art DFF methods and we also analyze the effect of several key deep architectural components. These experiments show that DDFFNet achieves state-of-the-art performance in all scenes, reducing depth error by more than 70% wrt classic DFF methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Excavation Hazard Assessment Zoning in District 1 in Shiraz Municipality Using Geographic Information System (GIS)

This research presents the geotechnical zoning map of district 1 in Shiraz municipality with focus on municipal deep excavation hazard assessment on data from 160 boreholes. For this purpose, the mechanical properties are determined according to the results of direct shear, uniaxial, and SPT tests and then excavation hazard assessment with depths of 3, 6 and 9 m, in situations where the excavat...

متن کامل

Introduction of low to high frequencies bispectrum rate feature for deep sleep detection from awakening by electroencephalogram

Background: Accurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signa...

متن کامل

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution.

Acoustic-resolution photoacoustic microscopy (ARPAM) plays an important role in studying the microcirculation system of biological tissues with deep penetration. High lateral resolution of ARPAM is achieved by using a high numerical aperture acoustic transducer. The deteriorated lateral resolution in the out-of-focus region can be alleviated by synthetic aperture focusing technique (SAFT). Prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01085  شماره 

صفحات  -

تاریخ انتشار 2017